K25U 0160

Req.	No.	:	
•			

Name:.....

Sixth Semester B.Sc. Degree (C.B.C.S.S. – O.B.E. – Regular/ Supplementary/Improvement) Examination, April 2025 (2019 to 2022 Admissions)

CORE COURSE IN MATHEMATICS

6B12 MAT : Numerical Methods, Fourier Series and Partial Differential Equations

Time: 3 Hours Max. Marks: 48

- I. Answer any 4 out of 5 questions. Each question carries 1 mark. (4×1=4)
 - 1) Define first divided difference formula.
 - 2) Define shift operator E.
 - 3) Define explicit single step method to solve an ordinary differential equation.
 - 4) Define the fundamental period.
 - 5) Write one dimensional wave equation.
- II. Answer any 8 questions out of 11 questions. Each question carries 2 marks.

 $(8 \times 2 = 16)$

- 6) Prove that $\Delta = \mathbf{E} 1$.
- 7) Prove that $\Delta \left(\frac{f_i}{g_i} \right) = \frac{g_i \Delta f_i f_i \Delta g_i}{g_i g_i + 1}$.
- 8) Prove that $\Delta(f_i^2) = (f_i + f_{i+1})\Delta f_i$.
- 9) Describe quadratic interpolation.
- 10) State Existence Uniqueness theorem for an initial value problem.

- 11) Explain Taylor series method.
- 12) If f(x) and g(x) have period p then prove that af(x) + bg(x) with any constant a and b also has the period p.
- 13) Define a periodic function with an example.
- 14) Solve $u_{xx} u = 0$ like an ordinary differential equation.
- 15) State fundamental theorem on super position.
- 16) Verify that $u = \frac{y}{x}$ satisfies $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = f(x,y)$ with $f(x,y) = \frac{2y}{x^3}$.
- III. Answer any 4 questions out of 7 questions. Each question carries 4 marks. (4×4=16)
 - 17) Find the Lagrange interpolating polynomial at x = 3 for

x : 2.5 3.5

f(x): 6 8

- 18) Prove that $E^{1/2} \delta = E 1$.
- 19) Find the classical Runge-Kutta fourth order of y' = x(y x), y(2) = 3 in the interval [2, 2.4] with step size h = 0.2.
- 20) Obtain the approximate value of y(0.2) for the initial value problem $y' = x^2 + y^2$, y(0) = 1 with h = 0.1 using Euler method.
- 21) Find the Fourier coefficient of the periodic function $f(x) = \begin{cases} -k & \text{if } -\pi < x < 0 \\ k & \text{if } 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$. Hence prove that $1 \frac{1}{3} + \frac{1}{5} \frac{1}{7} + ... = \frac{\pi}{4}$.
- 22) Find the d'Alembert's solution of the wave equation $u_{tt} c^2 u_{xx} = 0$.
- 23) Find the type, transform to normal form and solve $u_{xx} + 4u_{yy} = 0$.

IV. Answer **any 2** questions out of 4 questions. **Each** question carries **6** marks. **(2×6=12)**

24) Prove that
$$\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Lambda}$$
.

- 25) Find the solution of the initial value problem y' = 2y x, y(0) = 1 by performing three iteration of the Picard's method.
- 26) Find the even half range expansion of the function $f(x) = \begin{cases} \frac{2k}{L}x & \text{if } 0 < x < \frac{L}{2} \\ \frac{2k}{L}(L-x) & \text{if } \frac{L}{2} < x < L \end{cases}$
- 27) Find the temperature u (x, t) in a laterally insulated copper bar 80cm long if the initial temperature is $100\sin\left(\frac{\pi x}{80}\right)^{\circ}$ C and the ends are kept at 0°C. How long will it take for the maximum temperature in the bar to drop to 50°C? Physical data for copper: density 8.92g/cm³, specific heat 0.092cal/g°C, thermal conductivity: 0.095cal/(cmsec°C).

